Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema Öztürk Yıldırım, ${ }^{\text {a* }}$ Hasan Küçükbay, ${ }^{\text {b }}$
Nihat STireci ${ }^{\text {c }}$ and
Hoong-Kun Fun ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44069 Malatya, Turkey, and ${ }^{\text {c }} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.072$
$w R$ factor $=0.219$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-Nitro-1-(2-piperidinoethyl)-1H-benzimidazole

The title compound, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$, was synthesized from 5nitrobenzimidazolium nitrate and N-(2-chloroethyl)piperidine hydrochloride in $\mathrm{KOH} / \mathrm{EtOH}$ solution. The piperidine ring has a chair conformation. The structure is stabilized by intraand intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Nitrobenzimidazole derivatives have been extensively investigated because of their biological activity. They are often used in drug design and also in non-linear optical materials, food additives and explosives (Rodembusch et al., 2004; Sarlauskas et al., 1997). Piperidine derivatives also exhibit versatile pharmacological activity (Mete et al., 1999; Özmen et al., 1999). Therefore, it seemed to be of interest to prepare compounds that incorporate these two heterocyclic groups and compare the results obtained with those for related nitrobenzimidazole derivatives (Akkurt et al., 2004; Yıldırım et al., 2005). Accordingly, we have synthesized and determined the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. All bond lengths and angles are in normal ranges and are comparable with those in related compounds (Akkurt et al., 2004, 2005; Yildrım et al., 2005). The piperidine ring has the usual chair conformation and the benzimidazole ring system is almost planar. The $\mathrm{N} 1 / \mathrm{O} 1 / \mathrm{O} 2$ plane is almost coplanar with the

Figure 1
A plot of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
\qquad

The packing, viewed along the [100] direction.
benzimidazole plane. Atom N1 deviates from this latter plane by 0.018 (2) \AA. The torsion angles $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$ are -75.4 (3) and 100.9 (3) ${ }^{\circ}$, respectively.

The crystal packing in (I) is influenced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The packing of (I) is shown in Fig. 2.

Experimental

2-Chloroethylpiperidine hydrochloride $(4.07 \mathrm{~g}, 22.1 \mathrm{mmol})$ was added to a solution of 5 -nitrobenzimidazolium nitrate (5.00 g , $22.1 \mathrm{mmol})$ and $\mathrm{KOH}(3.75 \mathrm{~g}, 67.0 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ and the mixture heated under reflux for 15 h . The mixture was then cooled, the precipitated potassium chloride filtered off and the solvent removed from the filtrate in vacuo. The residue was treated with chloroform (30 ml), and the chloroform extract was washed with NaOH solution, then water. The volatiles were then driven off in vacuo to give an oily residue. The residue was crystallized from EtOH $(20 \mathrm{ml})$ (yield: $4.13 \mathrm{~g}, 68 \%$; m.p.: $435-436 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.4$ (m, ring methylene, 2 H), 1.5 (m , ring methylene, 4 H), 2.3 (m , ring methylene, 4 H), $2.7\left(t, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ piperidine, 2 H$), 4.3\left(t, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ piperidine, 2 H$), 7.4(d, \mathrm{Ar}-\mathrm{H}, 1 \mathrm{H}), 8.2(d+s, \mathrm{Ar}-\mathrm{H}, 2 \mathrm{H}), 8.6(s, 2-$ $\mathrm{CH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 24.04,25.91,43.31,54.74,58.07,109.65$, 117.80, 118.57, 143.75, 147.07. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 61.31, H 6.59, N 20.43%; found: C 60.72, H 6.26, N 19.95%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=274.32$
Triclinic, $P \overline{1}$
$a=6.3202(2) \AA$
$b=10.1321(4) \AA$
$c=12.4362(5) \AA$
$\alpha=104.109(3)^{\circ}$
$\beta=103.953(2)^{\circ}$
$\gamma=102.546(2)^{\circ}$
$V=716.61(5) \AA^{\circ}$

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans
Absorption correction: none
9940 measured reflections
3272 independent reflections

2158 reflections with $I>2 \sigma(I)$

$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.219$
$S=1.06$
3272 reflections
253 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1044 P)^{2}\right. \\
& \quad+0.19 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-N1	$1.227(5)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.388(3)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.227(5)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.303(4)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.461(4)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.454(4)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.369(3)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.452(4)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.364(3)$	$\mathrm{N} 4-\mathrm{C} 14$	$1.455(4)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.463(3)$		
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$123.6(3)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	$105.68(18)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4$	$118.1(3)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$117.0(3)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 4$	$118.3(3)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$118.7(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7$	$106.1(2)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 1$	$109.59(19)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 8$	$127.3(2)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$	$130.7(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$126.5(2)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 3$	$114.1(2)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{C} 7$	$104.5(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$111.7(2)$
$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 10$	$112.2(3)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 8$	$113.0(3)$
$\mathrm{C} 9-\mathrm{N} 4-\mathrm{C} 14$	$112.2(3)$	$\mathrm{N} 4-\mathrm{C} 10-\mathrm{C} 11$	$110.9(4)$
$\mathrm{C} 10-\mathrm{N} 4-\mathrm{C} 14$	$109.8(3)$	$\mathrm{N} 4-\mathrm{C} 14-\mathrm{C} 13$	$111.6(4)$
N2-C1-C2	$131.9(2)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	$1.10(2)$	$2.19(2)$	$2.692(4)$	$104.8(16)$ $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{i}}$

Symmetry code: (i) $x, y-1, z$.

The H atoms were found in a difference Fourier map and were refined isotropically, with $\mathrm{C}-\mathrm{H}=0.87$ (5)-1.10 (2) \AA.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

HK and NŞ thank Ínönü University Research Fund (BAPB-2005/37) for financial support for this study.

References

Akkurt, M., Öztürk, S., Sireci, N., Küçükbay, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o1185-o1187.
Akkurt, M., Yıldırım Öztürk, S., Orhan E., Küçükbay, H. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2804-2805.

organic papers

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Mete, A., Şener, Ş., Küçükbay, H., Günal, S. \& Durmaz, R. (1999). Indian J. Chem. Sect B, 38, 197-200.
Özmen, M., Şener, Ş., Mete, A. \& Küçükbay, H. (1999). Environ. Toxicol. Chem. 18, 241-246.
Rodembusch, F. S., Buckup, T., Segala, M., Tauares, L., Correia, R. R. B. \& Stefani, V. (2004). Chem. Phys. 305, 115-121.

Sarlauskas, J., Dickancaite, E., Nemeikaite, A., Anusevicius, Z., Nivinskas, H., Segura-Aguibar, J. \& Cenas, N. (1997). Arch. Biochem. Biophys. 346, 219 229.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yıldırım, S. O., Akkurt, M., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2038-o2039.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

